Média móvel - MA O que é uma Média em Movimento - MA Um indicador amplamente utilizado na análise técnica que ajuda a suavizar a ação de preços, eliminando o ruído de flutuações de preços aleatórias. Uma média móvel (MA) é um indicador de tendência ou atraso porque se baseia em preços passados. As duas MAs básicas e comumente usadas são a média móvel simples (SMA), que é a média simples de uma segurança em um determinado número de períodos de tempo, e a média móvel exponencial (EMA), que dá maior peso aos preços mais recentes. As aplicações mais comuns de MAs são identificar a direção da tendência e determinar os níveis de suporte e resistência. Embora os MAs sejam úteis o suficiente por si só, eles também formam a base de outros indicadores, como a Divergência da Convergência da Média Mover (MACD). Carregando o jogador. BREAKING DOWN Média móvel - MA Como exemplo de SMA, considere uma garantia com os seguintes preços de fechamento em 15 dias: Semana 1 (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 semanas 3 (5 dias) 28, 30, 27, 29, 28 Um MA de 10 dias avaliaria os preços de fechamento dos primeiros 10 dias como primeiro ponto de dados. O próximo ponto de dados eliminaria o preço mais antigo, adicionaria o preço no dia 11 e levaria a média, e assim por diante, como mostrado abaixo. Conforme observado anteriormente, as MAs desaceleram a ação de preço atual porque são baseadas em preços passados quanto mais o período de tempo para o MA, maior o atraso. Assim, um MA de 200 dias terá um grau de atraso muito maior do que um MA de 20 dias porque contém preços nos últimos 200 dias. O comprimento do MA a ser usado depende dos objetivos de negociação, com MAs mais curtos usados para negociação de curto prazo e MA mais longo prazo mais adequados para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com pausas acima e abaixo dessa média móvel considerada como sinais comerciais importantes. Os MAs também oferecem sinais comerciais importantes por conta própria, ou quando duas médias atravessam. Um MA ascendente indica que a segurança está em uma tendência de alta. Enquanto um MA decrescente indica que está em uma tendência de baixa. Da mesma forma, o momento ascendente é confirmado com um cruzamento de alta. Que ocorre quando um mes de curto prazo cruza acima de um MA de longo prazo. O impulso descendente é confirmado com um cruzamento de baixa, que ocorre quando um MA de curto prazo cruza abaixo de um MA mais longo prazo. Médias móveis exponentes As médias móveis são mais do que o estudo de uma sequência de números na ordem sucessiva. Os primeiros praticantes da análise de séries temporais estavam realmente mais preocupados com os números das séries temporais individuais do que com a interpolação desses dados. Interpolação. Sob a forma de teorias e análises de probabilidade, vieram muito mais tarde, à medida que os padrões foram desenvolvidos e as correlações descobertas. Uma vez entendida, várias curvas e linhas moldadas foram desenhadas ao longo da série temporal em uma tentativa de prever onde os pontos de dados podem ir. Estes são agora considerados métodos básicos atualmente utilizados pelos comerciantes de análise técnica. A análise de gráficos pode ser rastreada até o Japão do século 18, mas como e quando as médias móveis foram aplicadas pela primeira vez para os preços de mercado, continua sendo um mistério. Em geral, entende-se que as médias móveis simples (SMA) foram usadas muito antes das médias móveis exponenciais (EMA), porque as EMAs são construídas na estrutura SMA e o contínuo SMA foi mais facilmente compreendido para fins de traçado e rastreamento. (Você gostaria de um pouco de fundo de leitura) Verificando as médias móveis: o que são) Média móvel simples (SMA) As médias móveis simples se tornaram o método preferido para rastrear os preços do mercado porque são rápidos em calcular e fácil de entender. Os praticantes do mercado precoce operaram sem o uso das métricas de gráfico sofisticadas em uso hoje, então eles dependeram principalmente dos preços do mercado como seus únicos guias. Eles calcularam os preços do mercado à mão, e representaram esses preços para denotar tendências e direção do mercado. Este processo foi bastante tedioso, mas provou ser bastante lucrativo com a confirmação de novos estudos. Para calcular uma média móvel simples de 10 dias, basta adicionar os preços de fechamento dos últimos 10 dias e dividir por 10. A média móvel de 20 dias é calculada adicionando os preços de fechamento ao longo de um período de 20 dias e dividindo em 20, e em breve. Esta fórmula não é apenas baseada em preços de fechamento, mas o produto é um meio de preços - um subconjunto. As médias móveis são denominadas em movimento porque o grupo de preços utilizado no cálculo se move de acordo com o ponto do gráfico. Isso significa que os dias antigos são descartados a favor de novos dias de fechamento, portanto, um novo cálculo sempre é necessário, correspondente ao prazo da média empregada. Assim, uma média de 10 dias é recalculada adicionando o novo dia e caindo no 10º dia e o nono dia é descartado no segundo dia. (Para obter mais informações sobre como os gráficos são usados na negociação de divisas, consulte o nosso Passo a passo básico do gráfico.) Média móvel exponencial (EMA) A média móvel exponencial foi refinada e mais comumente usada desde a década de 1960, graças a experimentos de praticantes anteriores com o computador. A nova EMA se concentraria mais nos preços mais recentes do que em uma longa série de pontos de dados, como a média móvel simples exigida. EMA atual ((Preço (atual) - EMA anterior)) X multiplicador) EMA anterior. O fator mais importante é a constante de suavização que 2 (1N) onde N é o número de dias. Um EMA 2 de 10 dias (101) 18,8 Isso significa que uma EMA de 10 períodos pesa o preço mais recente 18,8, um EMA 9,52 e EMA de 20 dias com um peso de 3,92 no dia mais recente. A EMA funciona ponderando a diferença entre o preço dos períodos atuais e o EMA anterior e adicionando o resultado ao EMA anterior. Quanto menor o período, mais peso se aplica ao preço mais recente. Linhas de montagem Por esses cálculos, os pontos são plotados, revelando uma linha apropriada. As linhas de montagem acima ou abaixo do preço de mercado significam que todas as médias móveis são indicadores de atraso. E são usados principalmente para seguir as tendências. Eles não funcionam bem com os mercados de alcance e os períodos de congestionamento porque as linhas adequadas não indicam uma tendência devido à falta de altos maiores evidentes ou baixos baixos. Além disso, as linhas de ajuste tendem a permanecer constantes sem um toque de direção. Uma linha de montagem ascendente abaixo do mercado significa uma longa, enquanto uma linha apropriada de queda acima do mercado significa um curto. (Para obter um guia completo, leia nosso Tutorial de média móvel.) O objetivo de empregar uma média móvel simples é detectar e medir as tendências, suavizando os dados usando os meios de vários grupos de preços. Uma tendência é manchada e extrapolada em uma previsão. O pressuposto é que os movimentos da tendência anterior continuarão. Para a média móvel simples, uma tendência a longo prazo pode ser encontrada e seguida muito mais fácil do que uma EMA, com uma suposição razoável de que a linha de montagem será mais forte do que uma linha EMA devido ao maior foco nos preços médios. Um EMA é usado para capturar movimentos de tendência mais curtos, devido ao foco nos preços mais recentes. Por este método, uma EMA deve reduzir os atrasos na média móvel simples, de modo que a linha de montagem irá reduzir preços mais perto do que uma média móvel simples. O problema com a EMA é o seguinte: é propenso a quebras de preços, especialmente em mercados rápidos e períodos de volatilidade. O EMA funciona bem até que os preços rompem a linha de montagem. Durante os mercados de maior volatilidade, você poderia considerar aumentar a duração do termo médio móvel. Pode-se até mudar de um EMA para um SMA, uma vez que o SMA suaviza os dados muito melhor do que um EMA devido ao seu foco em meios de longo prazo. Indicadores de evolução da tendência Como indicadores de atraso, as médias móveis servem bem como suporte e linhas de resistência. Se os preços se reduzem abaixo de uma linha de ajuste de 10 dias em uma tendência ascendente, as chances são boas de que a tendência ascendente pode estar diminuindo, ou pelo menos o mercado pode estar se consolidando. Se os preços caírem acima de uma média móvel de 10 dias em uma tendência de baixa. A tendência pode estar diminuindo ou se consolidando. Nesses casos, empregue uma média móvel de 10 e 20 dias em conjunto e espere que a linha de 10 dias atravesse acima ou abaixo da linha de 20 dias. Isso determina a próxima direção de curto prazo para os preços. Para períodos de longo prazo, observe as médias móveis de 100 e 200 dias para direção de longo prazo. Por exemplo, usando as médias móveis de 100 e 200 dias, se a média móvel de 100 dias cruza abaixo da média de 200 dias, é chamada de cruz da morte. E é muito competitivo para os preços. Uma média móvel de 100 dias que atravessa acima de uma média móvel de 200 dias é chamada de cruz dourada. E é muito otimista para os preços. Não importa se um SMA ou um EMA é usado, porque ambos são indicadores de tendência. É apenas a curto prazo que a SMA tem ligeiros desvios de sua contraparte, a EMA. Conclusão As médias móveis são a base da análise de gráficos e séries temporais. As médias móveis simples e as médias móveis exponenciais mais complexas ajudam a visualizar a tendência ao suavizar os movimentos de preços. A análise técnica às vezes é referida como uma arte em vez de uma ciência, que leva anos para dominar. (Saiba mais no nosso Tutorial de Análise Técnica.) Modelos de suavização média e exponencial em movimento Como um primeiro passo para se deslocar além dos modelos médios, modelos de caminhada aleatórios e modelos de tendência linear, padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização . O pressuposto básico por trás da média e dos modelos de suavização é que as séries temporais são localmente estacionárias com uma média que varia lentamente. Por isso, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, use isso como a previsão para um futuro próximo. Isso pode ser considerado como um compromisso entre o modelo médio e o modelo random-walk-without-drift. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel geralmente é chamada de uma versão quotsmoothedquot da série original porque a média a curto prazo tem o efeito de suavizar os solavancos na série original. Ao ajustar o grau de alisamento (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ideal entre o desempenho dos modelos de caminhada aleatória e média. O tipo mais simples de modelo de média é o. Média Móvel simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para repousar Para uma previsão das séries temporais Y feitas o mais cedo possível por um determinado modelo.) Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar para trás do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Assim, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: esta é a quantidade de tempo pelo qual as previsões tenderão a atrasar os pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados na resposta a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m for muito grande (comparável ao comprimento do período de estimativa), o modelo SMA é equivalente ao modelo médio. Tal como acontece com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot para os dados, ou seja, os menores erros de previsão em média. Aqui é um exemplo de uma série que parece exibir flutuações aleatórias em torno de uma média que varia lentamente. Primeiro, vamos tentar ajustá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: o modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo, elege muito da quotnoisequot no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se, em vez disso, tentemos uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais lisas: a média móvel simples de 5 meses produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nesta previsão é de 3 ((51) 2), de modo que tende a atrasar os pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não se desviam até vários períodos depois). Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se ampliam à medida que o horizonte de previsão aumenta. Isso obviamente não está correto. Infelizmente, não existe uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para esse modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões do horizonte mais longo. Por exemplo, você poderia configurar uma planilha em que o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc., dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e, em seguida, construir intervalos de confiança para previsões de longo prazo, adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obtemos previsões ainda mais suaves e mais de um efeito de atraso: a idade média é agora de 5 períodos (91) 2). Se tomarmos uma média móvel de 19 termos, a média de idade aumenta para 10: Observe que, de fato, as previsões estão atrasadas em torno de 10 pontos. Qual quantidade de suavização é melhor para esta série. Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3 termos: Modelo C, a média móvel de 5 termos, produz o menor valor de RMSE por uma pequena margem ao longo dos 3 Médias temporais e de 9 termos, e suas outras estatísticas são quase idênticas. Assim, entre os modelos com estatísticas de erro muito semelhantes, podemos escolher se preferimos um pouco mais de capacidade de resposta ou um pouco mais de suavidade nas previsões. (Retornar ao topo da página.) Browns Suavização exponencial simples (média móvel ponderada exponencialmente) O modelo de média móvel simples descrito acima tem a propriedade indesejável de que trata as últimas observações k de forma igualitária e ignora completamente todas as observações precedentes. Intuitivamente, os dados passados devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que o segundo mais recente, e o segundo mais recente deve ter um pouco mais de peso do que o terceiro mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Deixe 945 indicar uma constante de quotesmoothing (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série como estimado a partir de dados até o presente. O valor de L no tempo t é calculado de forma recursiva a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior em uma quantidade fracionada de 945. É o erro cometido em Tempo t. Na terceira versão, a previsão é uma média móvel ponderada exponencialmente (com desconto) com o fator de desconto 1- 945: a versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em uma Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior e a célula onde o valor de 945 é armazenado. Note-se que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, supondo que o primeiro valor suavizado seja igual à média. (Voltar ao topo da página.) A idade média dos dados na previsão de suavização simples-exponencial é 1 945 em relação ao período para o qual a previsão é calculada. (Isso não deve ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a atrasar os pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0.5 o atraso é de 2 períodos quando 945 0.2 o atraso é de 5 períodos quando 945 0.1 o atraso é de 10 períodos e assim por diante. Para uma média de idade dada (ou seja, a quantidade de lag), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão da média móvel simples (SMA) porque coloca um peso relativamente maior na observação mais recente - isto é. É um pouco mais quotresponsivech para as mudanças ocorridas no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 ambos têm uma idade média de 5 para os dados em suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no Ao mesmo tempo, não possui 8220forget8221 sobre valores com mais de 9 períodos de tempo, como mostrado neste gráfico: Outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, portanto, pode otimizar facilmente Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor ideal de 945 no modelo SES para esta série é 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3,4 períodos, o que é semelhante ao de uma média móvel simples de 6 termos. As previsões de longo prazo do modelo SES são uma linha direta horizontal. Como no modelo SMA e no modelo de caminhada aleatória sem crescimento. No entanto, note que os intervalos de confiança computados por Statgraphics agora divergem de forma razoável e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um pouco mais previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Então a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não-sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1- 945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série analisada aqui, o coeficiente MA (1) estimado é 0.7029, o que é quase exatamente um menos 0.2961. É possível adicionar a hipótese de uma tendência linear constante não-zero ao modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não-sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial constante a longo prazo a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa de quotinflação adequada (taxa de crescimento) por período pode ser estimada como o coeficiente de inclinação em um modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode ser baseado em outras informações independentes sobre perspectivas de crescimento a longo prazo . (Voltar ao topo da página.) Browns Linear (ou seja, duplo) Suavização exponencial Os modelos SMA e os modelos SES assumem que não há nenhuma tendência de nenhum tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Previsões passo a passo quando os dados são relativamente barulhentos) e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. E quanto a tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaca claramente contra o ruído e, se houver necessidade de prever mais de 1 período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de alisamento exponencial simples pode ser generalizado para obter um modelo de alisamento exponencial linear (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência mais simples do tempo é o modelo de suavização exponencial linear Browns, que usa duas séries suavizadas diferentes centradas em diferentes pontos no tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de alisamento exponencial linear Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em várias formas diferentes, mas equivalentes. A forma quotstandardquot deste modelo geralmente é expressa da seguinte maneira: Seja S denotar a série de suavização individual obtida pela aplicação de suavização exponencial simples para a série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, sob simples Suavização exponencial, esta seria a previsão de Y no período t1.) Então, deixe Squot indicar a série duplamente suavizada obtida aplicando o alisamento exponencial simples (usando o mesmo 945) para a série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dada por: Isto produz e 1 0 (isto é, traga um pouco e deixe a primeira previsão igual a primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isso produz os mesmos valores ajustados que a fórmula com base em S e S, se estes últimos foram iniciados usando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Suavizante Brown8217s modelo LES calcula estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz com um único parâmetro de suavização coloca uma restrição nos padrões de dados que ele pode caber: o nível e a tendência Não podem variar a taxas independentes. O modelo LES de Holt8217s aborda esse problema ao incluir duas constantes de suavização, uma para o nível e outra para a tendência. A qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui, eles são computados de forma recursiva a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam o alisamento exponencial separadamente. Se o nível estimado e a tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão de Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada de forma recursiva interpolando entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1- 945. A alteração no nível estimado, Lt 8209 L t82091. Pode ser interpretado como uma medida ruim da tendência no tempo t. A estimativa atualizada da tendência é então calculada de forma recursiva interpolando entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: a interpretação da constante de simulação de tendência 946 é análoga à da constante de alívio de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda muito lentamente ao longo do tempo, enquanto modelos com 946 maiores assumem que está mudando mais rapidamente. Um modelo com um grande 946 acredita que o futuro distante é muito incerto, porque os erros na estimativa de tendência se tornam bastante importantes ao prever mais de um período à frente. (Voltar ao topo da página.) As constantes de suavização 945 e 946 podem ser estimadas da maneira usual, minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas revelam-se 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume mudanças muito pequenas na tendência de um período para o outro, então, basicamente, esse modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados utilizados na estimativa do nível local da série, a idade média dos dados utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a ela. . Neste caso, isso é 10.006 125. Este não é um número muito preciso na medida em que a precisão da estimativa de 946 não é realmente 3 casas decimais, mas é da mesma ordem geral de grandeza que o tamanho da amostra de 100, então Este modelo está com uma média de bastante história na estimativa da tendência. O gráfico de previsão abaixo mostra que o modelo de LES estima uma tendência local um pouco maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, então este é quase o mesmo modelo. Agora, isso parece previsões razoáveis para um modelo que deveria estimar uma tendência local Se você 8220eyeball8221 este gráfico, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foi estimado pela minimização do erro quadrado das previsões de 1 passo à frente, não de previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está procurando é erros de 1 passo a passo, você não está vendo a imagem maior das tendências em relação a (digamos) 10 ou 20 períodos. Para obter este modelo mais em sintonia com a extrapolação dos dados no olho, podemos ajustar manualmente a constante de alívio da tendência, de modo que ele use uma linha de base mais curta para a estimativa de tendência. Por exemplo, se optar por definir 946 0,1, a idade média dos dados utilizados na estimativa da tendência local é de 10 períodos, o que significa que estamos em média a tendência nos últimos 20 períodos ou mais. Aqui é o que parece o gráfico de previsão se definimos 946 0,1 enquanto mantemos 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso extrapolar esta tendência mais de 10 períodos no futuro. E as estatísticas de erro Aqui está uma comparação de modelo para os dois modelos mostrados acima, bem como três modelos SES. O valor ideal de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com um pouco mais ou menos capacidade de resposta, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alpha 0.3048 e beta 0.008 (B) Holts linear exp. Alisamento com alfa 0.3 e beta 0.1 (C) Suavização exponencial simples com alfa 0.5 (D) Suavização exponencial simples com alfa 0.3 (E) Suavização exponencial simples com alfa 0.2 Suas estatísticas são quase idênticas, então realmente podemos usar a escolha com base De erros de previsão de 1 passo à frente na amostra de dados. Temos de voltar atrás em outras considerações. Se acreditamos firmemente que faz sentido basear a estimativa da tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se quisermos ser agnósticos sobre se existe uma tendência local, então um dos modelos SES pode ser mais fácil de explicar e também daria mais previsões do meio da estrada para os próximos 5 ou 10 períodos. (Retornar ao topo da página.) Qual tipo de tendência-extrapolação é melhor: horizontal ou linear Evidências empíricas sugerem que, se os dados já foram ajustados (se necessário) para inflação, então pode ser imprudente extrapolar linear de curto prazo Tendências muito distantes no futuro. As tendências evidentes hoje podem diminuir no futuro devido a causas variadas, como obsolescência do produto, aumento da concorrência e recessões cíclicas ou aumentos em uma indústria. Por este motivo, o alisamento exponencial simples geralmente apresenta melhor fora da amostra do que seria de esperar, apesar da sua extrapolação de tendência horizontal de quotnaivequot. As modificações de tendências amortecidas do modelo de alisamento exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES da modificação amortecida pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. (Beware: nem todo o software calcula os intervalos de confiança para esses modelos corretamente.) A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de alisamento (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos adiante que você está prevendo. Em geral, os intervalos se espalham mais rápido, à medida que 945 se ampliam no modelo SES e se espalham muito mais rápido quando o alisamento linear, em vez do simples, é usado. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Retornar ao topo da página.) Média de Movimento Suavizada Uma Média de Movimento Suavizada é uma Média de Movimento Exponencial, apenas com um período mais longo aplicado. A média movida suavizada dá aos preços recentes uma ponderação igual aos históricos. O cálculo não se refere a um período fixo, mas sim leva em consideração todas as séries de dados disponíveis. Isso é conseguido subtraindo a média movimentada suavizada de ontem do preço de hoje. Adicionando este resultado a média movediça suavizada de ontem, resulta na média móvel de hoje. Período de propriedades. O número de barras em um gráfico. Se o gráfico exibir dados diários, o período denota dias em gráficos semanais, o período será por semanas, e assim por diante. O aplicativo usa um padrão de 9. No entanto, para suavizar a média móvel, o período especificado é alongado: Period2n-1. Aspecto: o campo Símbolo no qual o estudo será calculado. O campo está configurado como Padrão, que, ao visualizar um gráfico para um símbolo específico, é o mesmo que Fechar. Interpretação Uma média móvel lisa é outro tipo de média móvel. Em uma média móvel simples, os dados de preços têm um peso igual no cálculo da média. Além disso, em uma Média de Movimento Simples, os dados de preço mais antigos são removidos da Média Móvel, pois um novo preço é adicionado à computação. A média movida suavizada usa um período mais longo para determinar a média, atribuindo um peso aos dados do preço à medida que a média é calculada. Assim, os dados de preços mais antigos na Média Móvel Suavizada nunca são removidos, mas eles têm apenas um impacto mínimo na Média Móvel. O principal uso deste estudo é a sua função de suavização. Desta forma, a Média Móvel remove as flutuações de curto prazo e deixa para ver a tendência predominante. As médias móveis funcionam melhor nos mercados de tendências. Um sinal de compra ocorre quando as médias de curto e médio prazo cruzam de abaixo para acima a média de longo prazo. Por outro lado, um sinal de venda é emitido quando as médias de curto e médio prazo atravessam de cima para baixo a média de longo prazo. Você pode usar os mesmos sinais com duas Médias móveis, mas a maioria dos técnicos de mercado sugerem usar médias de longo prazo ao negociar apenas duas médias movimentadas suavizadas em um sistema de cruzamento. Outra abordagem comercial é usar o conceito de preço atual. Se o preço atual estiver acima das médias movimentadas suavizadas, você compra. Liquidifique essa posição quando o preço atual cruza abaixo da média móvel. Para uma posição curta, venda quando o preço atual estiver abaixo da média móvel suavizada. Liquidifique essa posição quando o preço atual sobe acima das médias movimentadas suavizadas. À medida que você usa as médias movimentadas suavizadas, não as confunda com as médias móveis simples. Uma média móvel lisa se comporta de forma bastante diferente de uma média móvel simples. É uma função do fator de ponderação ou comprimento da média. Literatura Murphy, John J. Análise Técnica dos Mercados Futuros. Instituto de Finanças de Nova York. Englewood Cliffs, NJ. 1986. Wilder, J. Welles. Novos conceitos em sistemas de negociação técnica. Greensboro, NC: Trend Research, 1978. Kaufman, P. J. Análise técnica em commodities. Kaufman, Perry J. O Novo Sistema de Comércio de Mercadorias e Métodos. 1987. Murphy, John J. The Visual Investor. New York, NY: John Wiley amp Sons, Inc. 1996. Maxwell, J. R. Commodity Futures Trading com médias móveis. 1976. Colby, Robert F. Myers, Thomas A. A enciclopédia dos indicadores técnicos de mercado. Dow Jones 8211 Irwin. Homewood, IL. 1988. Pring, Martin J. Análise Técnica Explicada. Lebeau, Charles e Lucas, David. Guia Técnico de Comerciantes de Análise de Computadores do Mercado de Futuros. Homewood, IL: Business One Irwin. 1991. Fonte do conteúdo: FutureSource Veja outros estudos de análise técnica Barra lateral primária Últimos Tweets Esta semana, estavam assistindo futuros de soja à medida que enfrentam ameaças de baixa. Leia mais: t. co0CEZrdDli8 Tempo há 17 Horas via Buffer Hot off the press Leia o último dtNewsletter para obter informações sobre como a incerteza econômica está afetando commodities: t. co3a1tCiERLj Tempo passado 1 Dia via Buffer Ainda há tempo para se cadastrar no nosso webinar AO VIVO em Usando o dt Pro, amanhã às 5PM CT Reserve seu assento: t. cohX1PBtKWBQ Tempo passado 1 dia via Buffer Copyright xA9 2017 xB7 Daniels Trading. Todos os direitos reservados. Este material é transmitido como uma solicitação para entrar em uma transação de derivativos. Este material foi preparado por um corretor da Daniels Trading, que fornece comentários de mercado de pesquisa e recomendações de comércio como parte de sua solicitação de contas e solicitação para negociações no entanto, a Daniels Trading não mantém um departamento de pesquisa como definido na Regra 1.71 da CFTC. A Daniels Trading, seus diretores, corretores e funcionários podem negociar derivativos para suas próprias contas ou para contas de outros. Devido a vários fatores (como tolerância ao risco, requisitos de margem, objetivos de negociação, estratégias de curto prazo versus longo prazo, análise técnica versus análise de mercado fundamental e outros fatores), essa negociação pode resultar na iniciação ou liquidação de posições diferentes de Ou contrariamente às opiniões e recomendações nele contidas. O desempenho passado não é necessariamente indicativo de desempenho futuro. O risco de perda nos contratos de futuros de negociação ou opções de commodities pode ser substancial e, portanto, os investidores devem entender os riscos envolvidos na tomada de posições alavancadas e devem assumir a responsabilidade pelos riscos associados a esses investimentos e por seus resultados. Você deve considerar cuidadosamente se essa negociação é adequada para você à luz de suas circunstâncias e recursos financeiros. Você deve ler a página de divulgação de risco acessada na DanielsTrading na parte inferior da página inicial. A Daniels Trading não está afiliada nem endossa qualquer sistema comercial, newsletter ou outro serviço similar. A Daniels Trading não garante nem verifica quaisquer reivindicações de desempenho feitas por tais sistemas ou serviços.
Vodacom YeboYethu vs MTN Zakhele Ray Mahlaka nbspnbsp 10 de fevereiro 2017nbsp15: 50 Investidores de ampla base Empowerment (BEE) esquemas de ações no setor de telecomunicações têm entusiasticamente exercido seus direitos de compra e venda de suas ações. Depois de ter sido bloqueado em acordos proibindo os acionistas de ações de negociação 8211 MTN Zakhele e Vodacomrsquos YeboYethu tornou-se negociável através over-the-counter plataformas este mês. Em seu primeiro dia de comércio YeboYethu partes abertas em R56 uma ação, mergulhando para R46 pelo fechamento do comércio. Desde então encontrou uma posição confortável em torno de R52.19, uma apreciação saudável do preço de lançamento de R25 em 2008. A imagem é um pouco diferente para MTN Zakhele. A ação abriu na R86 este mês após a sua plataforma de negociação over-the-counter sucumbiu a duas falhas técnicas a partir de novembro. Desde o seu relançamento no final de janeiro a parte tem pairado em R95. Esta é uma valorização de cinco vezes...
Comments
Post a Comment